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Abstract. We consider the dynamics of invasion percolation for different models. This 
process exhibits scaling behaviours which, in the simplest case, can be related to some 
critical static properties of usual percolation. In particular, the concept of bursts is shown 
to be of fundamental importance. The critical exponents we derive are checked numerically 
on a case of invasion percolation where growth is restricted to the hull of the existing cluster. 

1. Introduction 

Percolation theory [l] is one of the most significant breakthroughs in the advance of 
statistical physics into the field of disordered material science. However, a priori, very 
few materials are likely to be close to the percolation critical point, since it corresponds 
to a very narrow region of the control parameter (concentration of one phase in a 
composite material, proportion of links between particles, time or temperature in a 
sol-gel reaction, etc). 

However, there are at least two examples where percolation can be applied naturally, 
without making use of very restrictive hypotheses on the disorder. The first case is 
that of an exponentially wide distribution of local transport properties where a percola- 
tion-like sublattice is known to control the global properties [2]. The second example, 
which will concern us in this paper, is a member of a large class of phenomena recently 
highlighted [3] under the generic name of ‘self-organised criticality’. Indeed, the 
construction of a percolation infinite cluster can be given a dynamic such that the 
percolation point appears to be a stable fixed point. Therefore, in such a case, the 
system will naturally evolve toward its critical percolation point. Invasion percolation 
[4] falls into this category. 

Apart from this general property, invasion percolation is relevant for immiscible 
fluid displacement in porous media [ 5 ] .  A wetting fluid initially saturating a porous 
medium is progressively replaced by a non-wetting one injected from one side of the 
medium, under pressure, at a very low flow rate (where capillary effects are dominant 
compared with viscous ones). Due to the one-to-one correspondence between the 
capillary pressure at the limit of separation of the phases in the pores and the random 
distribution of pore radii, the injection process generates a growing percolation cluster 
when the amount of non-wetting fluid increases with pressure (a control parameter). 
In particular, the breakthrough corresponds to the pressure value when the invading 
fluid extends at very large distances from the injection wall. It has been recently 

t Also at CERAM, Ecole Nationale des Ponts et ChaussBes, La Courtine, BP105, 93194 Noisy le Grand 
Cedex, France. 

0305-4470/89/ 173693 + 13$02.50 @ 1989 IOP Publishing Ltd 3693 



3694 S Roux and E Guyon 

emphasised experimentally [6] and numerically [7]t that the invasion takes place with 
irregular jumps associated with the filling of pockets connected to the invaded cluster 
by a narrow neck. This is the basis of ‘Haines jumps’ [9] or ‘bursts’, whose role will 
be underlined in the understanding of the temporal development of invasion percola- 
tion. In practice, it is possible to stabilise the percolation cluster to its critical point 
as discussed above provided the capillary medium does not have a capillary barrier 
at its exit side: in this case, the invading fluid will start flowing freely out of the medium 
as soon as it reaches this border without further invasion. 

A recent numerical study by Furuberg et al [lo] has revealed an important scaling 
feature of the dynamics of invasion percolation which emphasises the key concept of 
bursts, as we will see below. More precisely, the distribution, N( r, T )  dr, of distances, 
r, between two sites added to the invaded cluster and separated by a time interval of 
T (i.e. one site is picked at a spatial coordinate x and a time t, while the other is 
picked at x + r, and at a time t + T) was found to follow the scaling law 

N( r, T )  = r-’cp( r D /  T )  (1) 

cp(x) x a  for x<c 1 (2) 

p(x) a x P b  for x >> 1 (2‘) 

where the function cp has the two limiting behaviours: 

with a = 1.4 and b = 0.6. D refers to the fractal dimension of the invaded cluster, 
measured to be about 1.82 in this case [lo]. 

We propose, in this paper, to connect the exponents a and b appearing in this 
scaling form with known exponents of usual percolation. We will consider here invasion 
percolation as a specific procedure to generate a cluster, with rules to be defined 
precisely below, without addressing the question of relevance to a real experimental 
phenomenon. We will nevertheless use freely the terms arising from such a correspon- 
dence: pressure, volume, incompressibility, etc. 

2. Models 

Let us consider a lattice whose sites, i, are assigned random independent numbers, x r ,  
uniformly sampled on [0,1]. We start with one side of the lattice as the ‘invaded 
cluster’. Then we look among the neighbouring sites of this cluster (the ‘growth sites’) 
for the one which carries the smallest random number, x, (the ‘pressure’). This site is 
then added to the cluster, and the new sites susceptible to growth are changed 
accordingly. The number of sites of the invaded cluster-its volume or mass-is very 
often considered as a ‘time’ parameter. Physically, it would correspond to an invasion 
performed at constant flow rate. This is the justification for the term ‘dynamics’ to 
qualify the development of the structure. The above rule defines the simplest invasion 
percolation, which we will refer to as model I .  

It is also important to modify the previous algorithm to take into account the 
incompressibility of the displaced fluid [4]. In this case, at each step of the process, 

t More precisely, these numerical studies were concerned with the occurrence of power law distributions 
in the conductance and resistance jumps during the invasion process. The origin of these distribution can 
be tracked back to the existance of a multifractal spectrum of the studied quantities at the percolation 
threshold [8]. However, the occurrence of bursts can affect the experimental measurement of the distributions 
and thus eventually account for the discrepancy of results obtained in [ 6 , 7 ] .  
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the sites that are no longer accessible from the opposite border are removed from the 
set of growth sites since the invaded fluid is trapped into such sites. However, this 
second version is not uniquely defined unless we specify further details. Two con- 
nectivity criteria must be used. 

The first criterion is for the occupied sites of the ‘invaded cluster’. We deliberately 
used here the word ‘neighbouring in a vague sense. We can choose this neighbourhood 
to be restricted to nearest neighbours, or we can enlarge it to second neighbours too. 

The second criterion is for the empty sites. A site A must be accessible from the 
opposite border in order for the invaded fluid to escape freely. Thus, there should 
exist a continuous path of empty sites which connects A to this border. The continuity 
implies a definition of what we consider to be connected. 

The choice of the continuity rules for both phases at their common boundary 
depends in practice on the local hydrodynamics and on the wetting properties as was 
analysed experimentally with great care by Lenormand et a1 [ 111. We now consider 
this choice at the theoretical level. 

The most natural choice is to use for the set of empty sites a continuity definition 
which is complementary to that of the set of occupied sites. (A complementary set of 
connectivity definitions is such that if there exists a continuous path according to one 
connectivity rule which spans the system in one direction, there does not exist any 
continuous path transversely, and if such a latter path exists then the former does not.) 
For instance, on a square lattice, if one definition of connectivity is between nearest 
neighbours, then the complementary rule will include not only nearest neighbours but 
also diagnonal next-nearest neighbours. In this case, the set of growth sites will be 
the ‘hull’ of the invaded cluster (see figure l (a ) ) .  This will be referred to as model 11. 

However, it is also possible to have definitions of continuity for the two phases 
which are not complementary (for instance, continuity is between nearest neighbours 
for both classes of sites on a square lattice). In this case, the set of growth sites will 

l o )  ( b )  
Figure 1. ( a )  The connectivity of invaded sites ( X )  of this square lattice is uia nearest and 
diagonal second neighbours. The different growth sites are shown for the first two models 
considered in the text: model I accepts all frontier sites (0 and 0) on a lattice with only 
nearest-neighbour connections (interior and exterior); model I1 is limited to the ‘hull’ (bold 
line) of the cluster and excludes the filling of holes (0) in order to fulfil the incompressibility 
requirement. ( b )  The connectivity of invaded sites ( x )  is limited to nearest neighbours. 
The growth sites (0) of model 111 are restricted to the external perimeter. 



3696 S Roux and E Guyon 

be the intersection of the ‘unoccupied external perimeter’ of the cluster of invading 
fluid and of the ‘unoccupied internal perimeter’ of the cluster of displacing fluid 
containing the opposite border (see figure l ( b ) ) .  This case will be referred to as model 
111. 

The distinction between these last two models might seem formal, but it is not! A 
simple way to stress the importance of this difference, is to note that the fractal 
dimension of the hull of a percolation cluster Dh is 7/4 [ 121 in two dimensions, whereas 
that of the external perimeter, De,  is 4/3 [13]. Therefore, the third model is much 
more restrictive than the second one on the set of available growth sites. 

3. Connection with a percolation problem 

It is natural to compare the invasion percolation cluster with a percolation cluster 
obtained by considering as occupied all sites carrying a random number smaller than 
a given value, p ,  and connected to the initial border. With this reference, the plain 
invasion percolation (model I)  matches from time to time exactly the conformation 
of the usual incipient infinite percolation cluster (the isolated finite clusters are not 
considered). More precisely, this will happen each time the random number, x(t), 
picked on the site that is invaded at time t, is larger than all previous x(t‘) for t‘< t .  
Thus, we expect the properties of this invasion percolation to be simply related to 
those of usual percolation. For instance, the fractal dimension of the invaded cluster 
should be that of the infinite cluster in percolation or, in two dimensions, 

Df=91/48-  1.89. (3) 

For the other two models, such a correspondance is no longer valid. However, we 
note a strict inclusion which implies that the fractal dimension of the invaded cluster, 
D, decreases when we go from model I to 11, and to 111. The numerical results of 
Wilkinson and Willemsen [4] give the estimate D = 1.82 for model 111, which indeed 
suggests a strict inequality. This result is confirmed by the numerical work of Furuberg 
et aE [lo]. We will see below that model I1 seems close to the first case ( D  -- 1.86). 

We will establish the connection with usual percolation, first using model I. We 
will then discuss the differences with other models. 

In an invasion experiment, the measurable quantities are the pressure, the injected 
volume (or here equivalently the time). Therefore, a meaningful correspondance with 
a percolation, p (concentration of occupied sites), with an observable quantity, say 
the time. We can introduce the usual control parameter, p ,  via the correlation length, 
5, 

5 a ( p  - P J - ”  (4) 

where p c  is the percolation threshold, and the scaling of the mass (time) of the invaded 
cluster. For a lattice of size L, the mass, t, of the percolation cluster can be written: 

t ( L /  0 5”. ( 5 )  

We obtain the ‘effective’ distance to threshold as 

(P - P c )  a t r e  

where 

e = l /v (D - 1). 
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An indirect way of checking this relation is to compute the equivalent equation of 
(4) for the number of growth sites, N g ,  using the fractal dimension of this set at the 
breakthrough point 

or 

where 

At a given time t, the distribution of random numbers x of sites already incorporated 
to the cluster is uniform on [O,p] ,  except very close to the upper limit, p ,  of the interval. 
However, the complete sequence x(  t )  contains much correlation between consecutive 
numbers. This can also be seen from the fact that the growth process appears through 
bursts of sites close to each other. It is the structure of these bursts that was the origin 
of the scaling observed in the dynamics. 

These bursts come from the accessibility of new sites once the set of growth sites 
has evolved. A burst can be defined in two ways. The first definition consists in calling 
a burst a connected cluster of sites added during a continuous time period. More 
precisely, if the set of sites invaded during the time interval [ t, t + TI, form a connected 
cluster then it is a burst. This definition is certainly the most natural; however, it is 
difficult to use experimentally (for instance, it requires a two-dimensional transparent 
sample) and numerically (it requires a large amount of computation time). This 
definition has, however, been used in some cases [14]t. 

We will not use that definition in the following but, instead, a second one, which 
forgets the notion of connectivity and focuses only on the signal x ( t ) .  Bursts appear 
there as ‘valleys’. One interesting feature of the series x ( t )  is that it explicitly gives 
the hierarchical structures of large valleys inside which are carved some smaller ones, 
which themselves contain still smaller ones, and so on. In order to take account of 
this aspect, we propose to define a burst corresponding to a time t as the time lapse 
0 such that: 

x (  t ’ )  < x (  t )  

~ ( t  - e )  > x ( t )  

for all t ’  such that t - 0 < t’ < t ( 1 l a )  

(1 lb)  

and 

where x( t )  is the ‘root’ of this burst. The construction is illustrated in figure 2. These 
bursts can be termed ‘backward’ since we look backward in time from the root. The 
analogous ‘forward bursts’ have the same statistics. Physically, once the site io has 
been included into the cluster at time t o ,  it allows growth to proceed to its neighbouring 
sites. If the subsequent sequence of x ( t )  up to a time t ,  is lower than x ( t o ) ,  then the 
corresponding sites form a cluster necessarily connected to the root io,  otherwise growth 
would have occurred before to.  Therefore, the intuitive notion of burst matches the 
one we use here. In addition, we note that our definition can be easily applied to an 

t The notion of bursts and the scaling of N, as well as some numerical simulations are given in [14] by 
Nadal. The definition of burst used in this paper is slighly different. 
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t 

t - e  f t 

Figure 2. The concept of burst can be easily defined through the diagram showing the 
random numbers picked on the invaded sites, x ( t ) ,  as a function of time. Starting at a 
time t, the burst size 0, is defined as the maximum time lapse, for which all x ( t ' )  are smaller 
than x( t ) ,  for t ' ~  [ t  - 8, t - 11. The relation with a more intuitive geometrical definition of 
a burst is explained in the text. 

experiment, since it does not require any geometrical information from the medium, 
but only makes use of the fluctuation of the pressure signal recorded during a constant 
flow rate injection. Moreover, the latter definition of 'bursts' is equivalent to the former 
in most cases (the rare cases where these two definitions disagree should not affect 
the scaling relations proposed in the following). 

We now investigate the statistical distribution of these bursts. One particular burst, 
which starts from a root x( t ) ,  can be identified with a finite percolation cluster which 
includes the root site, and where the control parameter p assumes the value x ( t ) .  If 
we consider only the bursts whose root x (  t )  is comprised between p and p + dp, we 
can write directly the distribution of the burst n ( e , p ) ,  from the usual cluster-size 
distribution in percolation. We recall that [ 11 the number of clusters of size s per site, 
n,, varies as 

ns = s-Tf'f(s"(P -PJ) (12) 

Each cluster is counted only once in n,, regardless to its size. One site being chosen, 
the probability that its cluster is of size s is proportional to n, times the number, s, of 
sites of the cluster. In our case, we only consider those sites which are likely to be a 
root for the cluster. Since they are located on the hull of the cluster, their number is 
proportional to s D h l D .  The distribution n (  8, p )  can thus be written 

n ( e , p )  = eDh/D--r f (eu(p-pc) ) .  (13) 

The complete burst distribution, n( e),  is the integral of n( e, p )  over p ,  with a weight 
such that we recover the distribution of x. Earlier, we have argued that x is uniformly 
spread between 0 and p c .  Thus 

or 
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We have a power law distribution with an exponent r' = 7 + U - Dh/ D t. 

4. Dynamic scaling 

We now turn to the scaling of the distribution of distances between growth sites 
separated by a time interval T. In order to derive the scaling form recalled in equation 
( 1 )  [lo], we first introduce two exponents 7'' and a. Their values will be considered 
in the following. 

Given a time interval T, we first consider the burst size 6 which is the smallest 
burst which encompasses the two sites rached at times t and t - T. We postulate that 
these burst sizes are distributed according to a power law: 

& ( e )  a e-"' (16) 
with e >  T. Normalisation of this distribution provides the T dependence of the 
prefactor. 

pT( e )  a (1 /  T ) (  e /  T)-T ' '3 (  8 - T )  (16') 
where 3(x )  is 1 if x is positive and 0 if not. 

Once we know that the growth occurred in a burst of size 8, we consider the 
distribution, Q e ( r ) ,  of distances, r, between growth sites in this burst size. We postulate 
here a second power law distribution valid for r smaller than Introducing the 
second exponent a, and taking into account the normalisation, we are led to 

r )  * (17) Q ~ ( ~ )  a rae- ( l+a) /D"  3 ( 6 1 / D -  

Let us first show that the two previous relations naturally lead to the scaling law 
written in (1). The statistical distribution of the distance distribution, N (  r, T), is given 
by the integral 

N(r ,  = lom PT(e)Qe(r) de. (18) 

Two situations can occur: 

N ( r ,  T ) a  r*T"'-le-(l+*)/D6-'"de 
T 

These two equations can be written in the form of the scaling function of equation 
( 1 )  with the identification: 

a = ( 1  + a ) / D  

b = 7"- 1. 

Equations (21) and (21') relate the scaling properties of the dynamics of invasion 
percolation to the structure of the bursts which characterise the growth. We are now 
left with the problem of finding the values of (Y and 7''. 

t This result is consistent with a bound T'> ~ + u - l  first derived by Nadal [14]. 
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5. Identification of the exponent 7'' 

The exponent 7'' (16) is related to the burst-size distribution which encompasses two 
growth sites separated by a time interval T. At each time t ,  two possible cases can 
happen: if the burst whose root is x( t )  is larger than T, then we keep it; otherwise, we 
look for the next burst which 'shells' the previous one, until we finally include x( t - T). 
Assuming a decorrelation of the consecutive burst sizes in this second case, apart from 
the trivial inequality of sizes resulting from the hierarchical inclusion, we obtain that 
7'' is equal to r' (15), or 

b = T +  (+ - Dh/D- 1. (22) 
In order to render plausible the assumption of decorrelation needed to obtain this 

result, we can relate this property to the cluster-size distribution close to the percolation 
threshold. As seen from (12), this distribution is a power law in s up to a cutoff which 
varies with the distance to threshold, Ip -pel. When p is changed, say when Ip -pel is 
reduced, a fraction of the finite clusters will merge in such a way that only the cutoff 
is modified, but not the power law of the distribution itself. This is somewhat similar 
to the construction we use here. The hypothesis of decorrelation we use justifies the 
fact that the lower cutoff is an external parameter, T, but the power law is not affected 
by this limit. 

Using the value of the exponents for usual percolation, we get exactly in two 
dimensions, b = 1/D or numerically, b = 48/91 = 0.527. Therefore, at short times, we 
expect a distance dependence of N(r ,  T )  as ( r -2T1'D)  from (20). The fact that the 
exponent of the distance r is exactly 2 certainly evokes the possibility of a simpler 
argument than the one we used to derive this result. 

6. Identification of the exponent a 

The exponent a is related to the distribution of distances between a pair of sites such 
that both are contained within one burst of size 8, and not any smaller one. A first 
naive guess would be to consider with an equal probability all sites of the cluster. 
Therefore, due to the fractal character of the cluster, one would then conclude that 
the probability to jump at a distance between r and r+dr ,  is proportional to 
However, we recall that the burst size 8 is the minimal burst which includes both sites. 
Two sites in close neighbourhoods are likely to belong to smaller bursts, thus compelling 
the two sites to be further away than with a uniform distribution. This acts as a 
repulsive term. We thus obtain a 2 D - 1 or a 2 1 (using (21')). In fact, this repulsive 
effect should not affect the scaling for large distances (the 'repulsion' effect is negligible 
when r is of the order of the maximum distance available, or close to the crossover 
point), but it should certainly give strong correction to the power law behaviour at 
small distances. More quantitatively, the probability rD-' should be weighted by the 
probability that the pair of sites are not contained with a smaller burst which should 
thus have the form (1 - Ar") (where A is a constant and U is a characteristic exponent). 
If this is true, then we would have 

a z D - 1  (23) 

a = l  (23') 

and 
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at least close to the crossover point ( r K  T 1 ’ D ) ,  with some downward curvature for 
smaller distances, at a given time interval T. Indeed, from the curves presented in 
figures 2 or 3 of the work of Furuberg et a1 [lo], a clear curvature is visible, and an 
exponent a equal to 1 close to the apex is not ruled out, although their estimate of a 
over the whole range of values was larger ( a  = 1.4). We emphasise that this last estimate 
is rather speculative. 

7. Numerical results 

We have studied invasion percolation numerically using model 11. This was done on 
a square lattice (see figure l ( a ) ) .  At each time step, the growth sites are identified by 
following the hull of the invaded cluster by a classic ‘maze-exploration’ algorithm. 
The lattice size considered varied from 20 to 80. Periodic boundary conditions were 
implemented in the direction parallel to the initial border line. The connectivity 
criterion used for the hull was restricted to the first neighbours. Therefore, the matching 
connectivity criterion for the invaded cluster was to the nearest and the diagnonal 
next-nearest neighbour. The corresponding percolation threshold to be considered is 
thus p c =  1 - p *  where p* is the usual site percolation threshold on the square lattice 
or, pc  = 0.407 254. We indeed observed (figure 3) that the mean value of x saturates 
for long times around p c / 2  2 0.20, consistent with a uniform distribution of x between 
0 and p c .  

O” f 4 . ,  4 
0 200 400 600 800 1000 

t 
Figure 3. Evolution of the mean value of the parameter x as a function of time for lattices 
of size 80. This value saturates at a value p J 2 ,  consistent with a uniform distribution of 
x between 0 and p c .  

Figure 4 shows the mean mass of the invaded cluster when it reaches the opposite 
border, as a function of the lattice size. The slope of the best-fit line in a log-log plot 
gives the estimate of the fractal dimension: 

D = 1.86 f 0.04 (24) 
quite consistent with the fractal dimension of a percolation cluster (3). The number 
of growth sites also varies as a power law (see figure 4). Our estimate is 

D, = 1.76 * 0.04 (25) 
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Figure 4. Log-log plot of the number of growth sites (upper curve), and of the mass (lower 
curve) of the invaded cluster (model 11) when it reaches the opposite border of a square 
lattice, as a function of the lattice size, L. Each point is an average of a few hundred 
realisations. The best fits, indicated by the straight lines have a slope of 1.76 and 1.86 
respectively, which should be compared with the corresponding values for usual percolation, 
7 /4= 1.75 and 91148- 1.89. 

very close to the value of the fractal dimension of the hull (Dh = 7/4). We note that 
it is possible that the fractal dimension of the invaded cluster (for models I1 and 111) 
is different from that of the infinite cluster in percolation, but the fractal dimension 
of the hull and of the external perimeter must be equal to their values in percolation, 
since the restriction on growth sites only affects the time counting, and the internal 
structure of the invaded cluster ('internal' refers to sites that are not on the external 
perimeter). 

Figure 5 shows, in a log-log plot, the evolution of the number of growth sites as 
a function of time for a lattice size of 80. From (9 ) :  we expect a slope g = 36/43 = 0.837, 

10 ' ' ' ' ' " ' ' """ 
v 

1 10 102 103 1 0 4  

t 
Figure 5. Log-log plot of the number of growth sites as a function of time for invasion 
percolation (model 11), for latticesof size 80. The asymptotic behaviour, indicated by the 
straight line, has a slope of 0.82, which should be compared with the estimate 0.84 given 
by equations (9) and (10). 
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very close to the measured value 

g = 0.82 * 0.04. (26) 
We now turn to the burst-size distribution. From the signal x( t ) ,  we have extracted 

the backward burst-size distribution, as shown in figure 2. Figure 6 shows a log-log 
plot of this distribution. The measured slope is 

T' = 1.50* 0.04 (27) 
to be compared with our expected value: T' = T + U - Dh/ D = 139191 = 1.527. 

We have also investigated the distance distribution for a unit time interval. The 
data are markedly affected by the small size of our lattice, and an abrupt drop for a 
distance roughly equal to the lattice size is clearly visible on the distribution shown 
in figure 7. However, the short distance behaviour is consistent with our prediction. 

3 

Figure 6. Log-log plot of the burst-size distribution, as illustrated in figure 2, for lattices 
of size 80. A best-fit line of slope T'= 1.50 is shown. The expected value is T'= 1.53. 

1' 
1 10  1 

d 
Figure 7. Log-log plot of the distance distribution between two consecutive growth sites. 
The distribution is cut off for large distances by the lattice size L, here 80. A straight line 
of slope 2 is shown for comparison with the theoretical expectation (equation (22)).  
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8. The case of model I11 

In order to see the implication of our discussion on the scaling behaviour of model 
111, we face the difficulty of first computing the fractal dimension D, which is apparently 
different from that of usual percolation (see above). We do not have at present any 
argument to get this exponent directly. However, it is well known that two exponents 
are sufficient to compute all others in usual percolation. Using the fact that the structure 
of the external perimeter should not be affected by the incompressibility effect (illus- 
trated in figure l ( a )  and l (b ) ,  we should be able to compute all exponents we need 
using D as a given parameter and all critical exponents from percolation. 

In particular, through the mapping we can relate the cluster size in the invasion 
percolation problem s, with the size of the corresponding cluster in percolation, s, by: 

(28) s l l / D  = S1/D, 

we thus introduce the ‘translation’ exponent, r = D,/Dt. Using D = 1.82, we get 
t = 1.04. Therefore, we get the distribution of clusters of size sl, by the change of 
variable in (12) justified by the fact that the differential element n, ds should correspond 
in the two cases: 

n,, = ~ ~ - ‘ ( ~ - ~ ) - ~ f ( s : ~ ( p  - p c ) ) .  (29) 
Upon performing the substitution T +  t ( ~ -  1) + 1 and U +  tu, we obtain for T‘ (and 
therefore T”) 

T”+ t { T ” -  1}+ 1 (30) 

b = l / D  (31 )  

thus, the exponent b appearing in (1) should again amount to 

or numerically, b = 0.55. This estimate is a little lower than, although consistent with, 
the b = 0.6 estimate of Furuberg et a1 [ 101. We note that the scaling of N(r ,  T )  for 
the short-time behaviour, is similar to that obtained previously using (3 1). 

Obviously, for the case of the exponent a, and thus a, no change from (23) is 
expected, provided the symbol D refers to the effective fractal dimension. 

9. Conclusion 

In conclusion, we have shown that the exponents appearing in the temporal develop- 
ment of invasion percolation can be expressed as a function of the critical exponents 
of usual percolation, for models I and 11. For model 111, where presumably the fractal 
dimension of the invaded cluster differs from that of the pure percolation case, this 
exponent can be readily included in our description to give the scaling form observed 
by Furuberg et a1 [lo]. Numerical results are in good agreement with the theoretical 
scalings proposed. 

We suggest that an experimental study of the above-mentioned properties could 
constitute an efficient tool to extract the pore-size distribution in a porous medium 
and, more importantly, to study correlations in size between neighbouring pores. This 
can be achieved by computing the burst-size distribution extracted from the record of 
pressure as a function of the injected volume. 

+ A similar result has been obtained independently by Furuberg (private communication). 
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